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Digital Filtering Technique for the FDTD
|mplementation of the Anisotropic
Perfectly Matched Layer

Omar Ramadan, Member, | EEE

Abstract—A new algorithm is presented for thefinite difference
time domain (FDTD) implementation of the anisotropic perfectly
matched layer (PML) using thedigital signal processing. Thealgo-
rithm is based on modeling the anisotropic PML region as a set of
infinite-impulseresponse (11 R) digital filters. The advantage of the
proposed method isthat it allows direct FDTD implementation of
Maxwell’s equationsin the PML region. In addition, the formula-
tionsareimplemented using D and B fieldsrather than E and H,
and thisallowsthePML to beindependent from thematerial prop-
erties of the FDTD computational domains. Numerical tests have
been carried out in two dimensionsto validate the formulations.

Index Terms—Anisotropic perfectly matched layer, digital fil-
ters, digital signal processing, finite difference time domain.

I. INTRODUCTION

HE perfectly matched layer (PML), introduced by

Berenger [1], has been shown to be the most popular
finite-difference time domain (FDTD ) [2] absorbing boundary
condition. As originally proposed, Berenger's PML is based
on splitting the field components and can only be used for
truncating lossless media. For lossy media, aternative PML
formulations have been introduced [3]-{5]. Among these
formulations, the anisotropic PML [3] has the advantage
of maintaining Maxwell’s equations in their familiar form.
Different techniques have been developed for implementing
the anisotropic PML in the FDTD method without the need for
Berenger’s field splitting [6], [7].

In this letter, a new and simple method is presented for the
FDTD implementation of the anisotropic PML using the dig-
ital signal processing (DSP). The method, named asdigital filter
PML (DF-PML), isbased on modeling the anisotropic PML re-
gionasaset of infiniteimpulseresponse (11R) digital filters. The
advantage of the proposed method isthat it allowsdirect FDTD
implementation of Maxwell’s equations in the PML region. In
addition, the proposed formulations are implemented using D
and B fields rather than the conventional E and H. This makes
the formulations to be independent from the material properties
of the FDTD computational domains[5]. It should be mentioned
that the proposed DF-PML formulations differ fromthosein[8],
whichisbased onincorporating the DSPinto the stretched coor-
dinate PML [4], in the fact that the DF-PML applies the digital
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filtering technique between E and D (or H and B) rather than
between the stretched coordinate variables [4] and the spatial
derivatives of E (or H) as mentioned in [8]. Two-dimensional
numerical tests have been carried out to validate the proposed
formulations.

[1. FORMULATION
In the anisotropic PML region [6], the frequency domain
Maxwell’ s equations can be written as
V x H =jwe & (w)e(w)E (1)
V X E = — jwpofi,(w)e(w)H @)
where £,.(w) and 7i,.(w) are, respectively, the relative permit-

tivity and permeability of the FDTD computational domain and
g(w) is defined [6] as
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whereo,, (n = «, y, z) arethe conductivity profiles of the PML
region in then—coordinates. Equations (1) and (2) can bewritten
interms of D and B fields as

V x H =jwé,.(w)D 4
VXE=—jwi.(w)B (5)

where D and B are given by

D =¢,&(w)E (6)
B =pog(w)H. (7

In these formulations, D and B are obtained easily through dis-
cretizing (4) and (5) by following Yee' salgorithm[2]. To obtain
E from D using (6) (or H from B using (7)), the following dig-
ital filtering techniqueis proposed. As an example, consider the
E. field component of (6)

D, =¢epe . (w)E. ©)
where
) =25t = = (1 +) (1+)) ©
JWEo
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Transforming (8) into the Z—domain, we obtain

D, (z) = eoe..(2)E.(2) (10)

where e..(z) isthe Z—transform of .. (w) which can be mod-
eled as asecond order |IR digital filter by transforming (9) into
the s—domain, using the relation jw — s, as

(r2)(ers)

and applying the bilinear transformation method [9] to (11)
using the relation s = 2(1 — 271)/A#(1 4+ z71), where At is
the sampling time step, and after some manipulations ¢..(z)
can be written as

e.a(s) = (1)

(1 — ocmz_l) By (1 — ayz_l)
(1—2"1) . (1—a.271)
where 3, = 1 + Ato,/2¢, (n = x,y,2) and o, =
(1— Atoy/2e,) /(1 + Atoy/2e,). Clearly, (12) represents
first order cascade realization [9] of a second order |IR digital
filter of the form
bOz + blz271 + b?zzi

(z)=C
e2:(%) 14+ a2~ +ag,272

where C' = f,0,/3. and the filter coefficients are given as:
Ay, = — (1 + Oéz), A2, = iz, bOz = 11 blz = - (a"r + ay) and
bo. = agav,. Substituting (12) into (10), we obtain

2 )/3 (1 — oy z 71)

€::(7) = Pa (12)

(13)

D.(z) = e, (1 _

=) B (-0
To write (14) in FDTD form, we introduce the variable
By (1= ayz™?)
fa(z) = 3. mEz(z) (15
then, (14) can be written as
1— gzt
Dz(z) = 50/3.7:((1_721))]2(2)' (16)
Therefore, E, can be computed from (15) as
E2) =0 B+ B (1-a) 1) @)
where f.(z) can be obtained from (16) as
fo(2) = ap2 7 fu(2) + 501/333 (1-27Y) D.(2). (18)

Asthe z—* operator in the Z—domain corresponds to adelay of
onetime step in the sampled time domain [9], (17) and (18) can
be written in FDTD form, respectively, as

n 1 n /4 n+l n
EMH =, E7 /3 (/2 = fl) (19)
S =anft 0/3 (D+t - Dr) (20)

where E7 L, Dl f7+1 and thefilter coefficients are evalu-
ated at the corresponding Yee's grid position [2]. It should be

mentioned that D™+ is computed through discretizing (4) fol-
lowing Yee salgorithm [2]. In addition, £7F* and f7*! can be
updated efficiently without storing, respectively, f2 and D? in
separate arrays. This can be done either by using the two step
technique mentioned in [10] or by using two simple temporary
variables to store the value of D? and f* [11]. Therefore, the
FDTD implementation of (14) requires only one additional aux-
iliary variable ( f.) per FDTD cell. Similar equations can be ob-
tained for the other £, and F, field components.

The aboveformulationsare appliedinthe PML regionswhere
al S, (n =,y ), in (3) overlap, such as the corner PML re-
gions[6]. In the face and edge PML regions[6], ssmpler formu-
lations can be obtained. As an example, to achieve perfect ab-
sorption for waves propagating in the z—direction, the el ements
of (3) should be chosen in the z—face PML region as [6]

S., nm=xz,y
E7777((")) = { Sl’ n==z (21)

which can be modeled as aset of first order IR digital filtersas

(1=a)
Byt =
eqn(2) = { (t 1)) ey .

1 (1-= _
B: G=azz- 1)y M=%

(22)
Using (22) and the Z—transform of (6), E can be obtained from

Das
() = azz_lEn(z)—i—ﬁ (1-2"YDy(z), n==y
e zflEn(z)-i-f—; (1—.27 1) Dy(z), n==z

(23
Equation (23) can be written in the FDTD form as
n 1 n n _
it = a by m(?n“—Dn), N=EY o
En B (D;H' —CYZD;L), n==xz

where E, D and the filter coefficients are evaluated at the
corresponding Yee's grid position [2]. As mentioned, by using
[10] or [11], E:;*l, (n = xz,v, 2), can be updated efficiently
without storing Dy, and hence no additional auxiliary variables
are needed in the face PML regions. Similar expressions can be
obtained in the other face and edge PML regions. To compute
H from B using (7), itisonly required to modify the coefficient
of the digital filter described in (12) to include the half space
cell offset that exists between E and H as described in Yee's
algorithm [2].

It is interesting to note that as ,.(w) and 7i,.(w) do not ap-
pear in the above formulations, the proposed DF-PML formula-
tions are therefore independent from the material properties of
the FDTD computational domain. Hence, for general media, the
above formulations can be used without any modification and it
isonly required to discretize (4) and (5), accordingly.

I1l. NUMERICAL STuDY

In order to validate the proposed formulations, the numer-
ical experiment of [12] was carried out in two dimensions for
the TM case. A point source is used to excite 100Az x 50Ay
isotropic and homogeneous FDTD computational domain at its
center. The space cell size in the z and ¥ directions are chosen
as Az = Ay = 1.5 cm and the time step was At = 25 ps. The
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Fig.1. Local error for the PML/ FDTD computational domain interface along
the line (xz, —25Ay) as observed at time 100A¢ for PML[8, 3, 0.0001%)] and

forlossless (¢ = p» =1, 0 = 0.0)andlossy (¢ = p» = 1, 0 = 0.01)
FDTD domains.
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Fig.2. Globa error in the computational domain for PML[8, 3, 0.0001%] and
forlossess (¢, = - = 1, 0 = 0.0) and lossy (¢, = p = 1, 0 = 0.01)
FDTD domains.

excitation used is similar to the derivative of the pulse used in
[12]. This pulse was preferred as it has low numerical grid dis-
persion[13]. Thereference FDTD solution, having no reflection
errors form the domain boundaries, is calculated using a much
larger computational domain (400Az x 400Ay).

The performance of the proposed DF-PML formulations
was investigated for lossless and lossy FDTD computational
domains. For both cases, the computational domain was
terminated by 8 PML layers backed by a perfect electric con-
ductor (PEC). The PML parameters were chosen to give good
absorbing performance and taken as PML [8, 3, 0.0001%],
as defined in Berenger's notation [1]. Figs. 1 and 2 show the
local and the global errors, as defined in [12], for lossless
(er = pr =1, c =0.0)andlossy (¢, = p. = 1, 0 = 0.01)
FDTD computational domains. The local error was calculated
for the PML/FDTD computational domain interface along the
line (x, —25Ay) as observed at time 100A¢. The results are
obtained using the proposed DF-PML formulations and the
formulations presented in [8]. Asit can be observed from these
results, both methods give aimost the same error performance.
It should be mentioned, however, that the proposed DF-PML
formulations require less computational resources than the
formulations in [8]. For the test cases, the DF-PML formula
tions require only one additiona auxiliary variable per field
component per cell in the corner PML regions and no addi-
tional auxiliary variables in the edge PML regions, while the

formulations in [8] require two additional auxiliary variables
per field component per cell in the corner PML regions and
one additional auxiliary variable per field component per cell
in the face PML regions. Therefore, significant savings in the
memory storage and the computational time requirements can
be realized using the DF-PML formulations.

It should be noted that the DF-PML formulations can also be
extended for truncating more generalized media such dispersive
or anisotropic media without any special treatments. In these
cases, all that is needed isto discretize (4) and (5), accordingly.

IV. CONCLUSION

Inthisletter, anew method, DF-PML, which incorporatesthe
DSP into the FDTD implementation of the anisotropic PML is
presented for truncating FDTD domains. The method is based
on modeling the anisotropic PML region as a set of IIR dig-
ital filters. The advantage of the method is that it allows direct
FDTD implementation of Maxwell’s equations in the PML re-
gion. Inaddition, theformulationsareimplemented using D and
B fieldsrather than E and H, which allows the formulations to
be independent from the material properties of the FDTD com-
putational domain. Numerical tests show that the error perfor-
mance of the DF-PML is similar to other PML formulations.
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