
340 IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 13, NO. 8, AUGUST 2003

Digital Filtering Technique for the FDTD
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Abstract—A new algorithm is presented for the finite difference
time domain (FDTD) implementation of the anisotropic perfectly
matched layer (PML) using the digital signal processing. The algo-
rithm is based on modeling the anisotropic PML region as a set of
infinite-impulse response (IIR) digital filters. The advantage of the
proposed method is that it allows direct FDTD implementation of
Maxwell’s equations in the PML region. In addition, the formula-
tions are implemented usingD andB fields rather than E andH,
and this allows the PML to be independent from the material prop-
erties of the FDTD computational domains. Numerical tests have
been carried out in two dimensions to validate the formulations.

Index Terms—Anisotropic perfectly matched layer, digital fil-
ters, digital signal processing, finite difference time domain.

I. INTRODUCTION

THE perfectly matched layer (PML), introduced by
Berenger [1], has been shown to be the most popular

finite-difference time domain (FDTD ) [2] absorbing boundary
condition. As originally proposed, Berenger’s PML is based
on splitting the field components and can only be used for
truncating lossless media. For lossy media, alternative PML
formulations have been introduced [3]–[5]. Among these
formulations, the anisotropic PML [3] has the advantage
of maintaining Maxwell’s equations in their familiar form.
Different techniques have been developed for implementing
the anisotropic PML in the FDTD method without the need for
Berenger’s field splitting [6], [7].

In this letter, a new and simple method is presented for the
FDTD implementation of the anisotropic PML using the dig-
ital signal processing (DSP). The method, named as digital filter
PML (DF-PML), is based on modeling the anisotropic PML re-
gion as a set of infinite impulse response (IIR) digital filters. The
advantage of the proposed method is that it allows direct FDTD
implementation of Maxwell’s equations in the PML region. In
addition, the proposed formulations are implemented using
and fields rather than the conventional and . This makes
the formulations to be independent from the material properties
of the FDTD computational domains [5]. It should be mentioned
that the proposed DF-PML formulations differ from those in [8],
which is based on incorporating the DSP into the stretched coor-
dinate PML [4], in the fact that the DF-PML applies the digital
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filtering technique between and (or and ) rather than
between the stretched coordinate variables [4] and the spatial
derivatives of (or ) as mentioned in [8]. Two-dimensional
numerical tests have been carried out to validate the proposed
formulations.

II. FORMULATION

In the anisotropic PML region [6], the frequency domain
Maxwell’s equations can be written as

(1)

(2)

where and are, respectively, the relative permit-
tivity and permeability of the FDTD computational domain and

is defined [6] as

(3)
where , ( ) are the conductivity profiles of the PML
region in the –coordinates. Equations (1) and (2) can be written
in terms of and fields as

(4)

(5)

where and are given by

(6)

(7)

In these formulations, and are obtained easily through dis-
cretizing (4) and (5) by following Yee’s algorithm [2]. To obtain

from using (6) (or from using (7)), the following dig-
ital filtering technique is proposed. As an example, consider the

field component of (6)

(8)

where

(9)
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Transforming (8) into the –domain, we obtain

(10)

where is the –transform of which can be mod-
eled as a second order IIR digital filter by transforming (9) into
the –domain, using the relation , as

(11)

and applying the bilinear transformation method [9] to (11)
using the relation , where is
the sampling time step, and after some manipulations
can be written as

(12)

where ( ) and
. Clearly, (12) represents

first order cascade realization [9] of a second order IIR digital
filter of the form

(13)

where and the filter coefficients are given as:
, , , and

. Substituting (12) into (10), we obtain

(14)

To write (14) in FDTD form, we introduce the variable

(15)

then, (14) can be written as

(16)

Therefore, can be computed from (15) as

(17)

where can be obtained from (16) as

(18)

As the operator in the –domain corresponds to a delay of
one time step in the sampled time domain [9], (17) and (18) can
be written in FDTD form, respectively, as

(19)

(20)

where , , and the filter coefficients are evalu-
ated at the corresponding Yee’s grid position [2]. It should be

mentioned that is computed through discretizing (4) fol-
lowing Yee’s algorithm [2]. In addition, and can be
updated efficiently without storing, respectively, and in
separate arrays. This can be done either by using the two step
technique mentioned in [10] or by using two simple temporary
variables to store the value of and [11]. Therefore, the
FDTD implementation of (14) requires only one additional aux-
iliary variable ( ) per FDTD cell. Similar equations can be ob-
tained for the other and field components.

The above formulations are applied in the PML regions where
all , ( ), in (3) overlap, such as the corner PML re-
gions [6]. In the face and edge PML regions [6], simpler formu-
lations can be obtained. As an example, to achieve perfect ab-
sorption for waves propagating in the –direction, the elements
of (3) should be chosen in the –face PML region as [6]

(21)

which can be modeled as a set of first order IIR digital filters as

(22)

Using (22) and the –transform of (6), can be obtained from
as

(23)
Equation (23) can be written in the FDTD form as

(24)

where , and the filter coefficients are evaluated at the
corresponding Yee’s grid position [2]. As mentioned, by using
[10] or [11], , ( ), can be updated efficiently
without storing , and hence no additional auxiliary variables
are needed in the face PML regions. Similar expressions can be
obtained in the other face and edge PML regions. To compute

from using (7), it is only required to modify the coefficient
of the digital filter described in (12) to include the half space
cell offset that exists between and as described in Yee’s
algorithm [2].

It is interesting to note that as and do not ap-
pear in the above formulations, the proposed DF-PML formula-
tions are therefore independent from the material properties of
the FDTD computational domain. Hence, for general media, the
above formulations can be used without any modification and it
is only required to discretize (4) and (5), accordingly.

III. NUMERICAL STUDY

In order to validate the proposed formulations, the numer-
ical experiment of [12] was carried out in two dimensions for
the TM case. A point source is used to excite
isotropic and homogeneous FDTD computational domain at its
center. The space cell size in the and directions are chosen
as and the time step was . The
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Fig. 1. Local error for the PML/ FDTD computational domain interface along
the line (x;�25�y) as observed at time 100�t for PML[8, 3, 0.0001%] and
for lossless (" = � = 1; � = 0:0) and lossy (" = � = 1; � = 0:01)
FDTD domains.

Fig. 2. Global error in the computational domain for PML[8, 3, 0.0001%] and
for lossless (" = � = 1; � = 0:0) and lossy (" = � = 1; � = 0:01)
FDTD domains.

excitation used is similar to the derivative of the pulse used in
[12]. This pulse was preferred as it has low numerical grid dis-
persion [13]. The reference FDTD solution, having no reflection
errors form the domain boundaries, is calculated using a much
larger computational domain ( ).

The performance of the proposed DF-PML formulations
was investigated for lossless and lossy FDTD computational
domains. For both cases, the computational domain was
terminated by 8 PML layers backed by a perfect electric con-
ductor (PEC). The PML parameters were chosen to give good
absorbing performance and taken as PML [8, 3, 0.0001%],
as defined in Berenger’s notation [1]. Figs. 1 and 2 show the
local and the global errors, as defined in [12], for lossless
( ) and lossy ( )
FDTD computational domains. The local error was calculated
for the PML/FDTD computational domain interface along the
line ( ) as observed at time . The results are
obtained using the proposed DF-PML formulations and the
formulations presented in [8]. As it can be observed from these
results, both methods give almost the same error performance.
It should be mentioned, however, that the proposed DF-PML
formulations require less computational resources than the
formulations in [8]. For the test cases, the DF-PML formula-
tions require only one additional auxiliary variable per field
component per cell in the corner PML regions and no addi-
tional auxiliary variables in the edge PML regions, while the

formulations in [8] require two additional auxiliary variables
per field component per cell in the corner PML regions and
one additional auxiliary variable per field component per cell
in the face PML regions. Therefore, significant savings in the
memory storage and the computational time requirements can
be realized using the DF-PML formulations.

It should be noted that the DF-PML formulations can also be
extended for truncating more generalized media such dispersive
or anisotropic media without any special treatments. In these
cases, all that is needed is to discretize (4) and (5), accordingly.

IV. CONCLUSION

In this letter, a new method, DF-PML, which incorporates the
DSP into the FDTD implementation of the anisotropic PML is
presented for truncating FDTD domains. The method is based
on modeling the anisotropic PML region as a set of IIR dig-
ital filters. The advantage of the method is that it allows direct
FDTD implementation of Maxwell’s equations in the PML re-
gion. In addition, the formulations are implemented using and

fields rather than and , which allows the formulations to
be independent from the material properties of the FDTD com-
putational domain. Numerical tests show that the error perfor-
mance of the DF-PML is similar to other PML formulations.
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